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1 Successive fast retransmits in cur-
rent TCP implementations

In this note we point out a long-standing problem for cur-
rent Tahoe and Reno TCP implementations that results from
invoking Fast Retransmit more than once in one roundtrip
time. The problem is illustrated by packet trace from simu-
lations. We have seen the same behavior in packet traces of
TCP traffic on the Internet.

Given current TCP implementations, for a TCP connec-
tion with a large congestion window and multiple noncon-
secutive packet drops within one window of data, it is possi-
ble for the TCP source to execute the Fast Retransmit proce-
dure twice for one window of packets. For Tahoe TCP, this
can occur when there are at least two nonconsecutive runs of
packet drops in one window of data.

2 A simulation of a packet-based net-
work

See Figure 2. First, the Tahoe-style TCP source receives
three duplicate ACKs, infers a dropped packet, and begins
slow-start. At 2.9 seconds, during the slow-start triggered
by a Fast Retransmit, the congestion window is 4 packets,
and the source retransmits packets 131 through 134, receiv-
ing four acknowledgements in return for packet 141. The
first ACK for packet 141 causes the source to transmit packet
142. Immediately after that, three duplicate ACKs arrive ac-
knowledging packet 141, triggered by the receipts of the re-
transmitted packets 132, 133, and 134. and the source uses
the Fast Retransmit procedure to Slow-Start and to retransmit
packet 142. The exact train of events after this is somewhat
intricate, and we won' t go through the details, but Figure 2
shows the pathological behavior that can result from multiple
Fast Retransmits in one roundtrip time.
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This problem is somewhat more difficult to duplicate in
simulations with Reno implementations. With Reno im-
plementations, the source essentially assumes that only one
packet has been dropped, retransmits that dropped packet,
and instead of waiting for the ACK to be received, contin-
ues transmitted new packets. For multiple packet drops in
one roundtrip time, the Reno source often has to wait for a
retransmit timer to recover (given the absence of Selective
ACKs). And in some circumstances with Reno, the ability to
have multiple Fast Retransmits in a single roundtrip time can
avoid the wait for a retransmit timer timeout, in the absence
of Selective ACKs. However, it is also possible for a second
Fast Retransmit to be invoked from duplicate ACKS received
from packets retransmitted during the slow-start triggered by
the retransmit timer timeout. This leads to problems similar
to those shown in Figure 2.
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Figure 1: The first 100 packets
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Figure 2: The second 100 packets, with Tahoe TCP
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Figure 3: The second 100 packets, with Tahoe TCP modified not to allow multiple Fast Retransmits from one window of data.
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3 A simulation of TCP over ATM

A second illustration of problems of multiple Fast Retrans-
mits comes from Tim Dwight [D95], from simulations of
TCP/IP over ATM.

Figure 4 shows the pathological behaviour that can result
from multiple fast retransmits. The dots show packets and
the open boxes show acknowledgements. The x-axis shows
the time that packets were transmitted on an interior link in
the simulated network. The dropped packets can be inferred
from the trace.

The first Fast Retransmit in Figure 4 results from three
dup acks for packet 25. The second Fast Retransmit results
from three dup acks for packet 42, the last packet transmitted
before the first Fast Retransmit was initiated.

Because the x-axis shows the time that packets appeared
on a link within the network, the sequence of events at the
sender has to be inferred from the graph. After the first Fast
Retransmit, when the sender's congestion control window
reaches four, the sender transmits packets 29-32. The sender
receives an ACK for packet 29, and transmits packets 33 and
34. Next the sender receives an ACK for packet 30, and
retransmits packets 35 and 36. Finally, the sender receives
two dup acks for packets 42 (as responses to packets 31 and
32). At this point the congestion window is 6, and the sender
transmits packets 43-48.

When the receiver receives packets 33-36, the receiver
sends four dup ACKs for packet 42. These dup ACKs trigger
the second Fast Retransmit and the sender reduces the con-
gestion window to 1 and transmits packet 43. The receiver
next receives packets 43-48, and returns ACKs. Immediately
after the second transmission of packet 43, the sender re-
ceives the ACK from the first transmission of packet 43. The
sender increases the congestion window to 2 and sends pack-
ets 44 and 45. The trace continues to unfold in this fashion.

In this case, the second Fast Retransmit triggered by dup
acks for packet 42 ultimately leads to a succession of fast re-
transmits. There is a Fast Retransmit every roundtrip time,
the congestion window never gets larger than 6 packets, and
every packet is transmitted twice. In this case, this patholog-
ical scenario will continue indefinitely.

4 Recommendations

One fix to the problem of multiple Fast Retransmits is not
to treat duplicate ACKs that acknowledge packets from the
same window as packets from a previous Fast Retransmit as
an indication of continued congestion.

In the Tahoe TCP implementation in our simulator, the fix
was done using an extra variablehigh seqto record the high-
est sequence number outstanding when the TCP initiated a
Fast Retransmit or responded to an ECN (Explicit Conges-
tion Notification [F94], such as a Source Quench message,
or the Explicit Congestion Notification bit implemented in
our simulator in packet headers) or a retransmit timer time-

out. Duplicate ACKs that did not acknowledge data higher
than this sequence number, not necessarily being an indica-
tion of congestion, would not trigger a Fast Retransmit. Once
the TCP source transmitted a packet higher than the variable
high seq, then the variable would be disabled (e.g., set to
zero) until the next congestion event.

In a Reno TCP implementation, the issues are slightly dif-
ferent. One possilibity would be to set the variablehigh seq
when the TCP source responds to an ECN or to a retransmit
timer timeout, but not to set it when TCP initiates Fast Re-
tranmit/Fast Recovery. This would still allow multiple Fast
Retransmits during Fast Recovery, but would prevent the se-
quence of a Fast Retransmit/Fast Recovery, a timeout, and
then a second Fast Retransmit/Fast Recovery for the same
window of data.

The disadvantage of this fix is that, for both the Tahoe and
the Reno cases, and for acks that do not acknowledge data
greater thanhigh seq, the TCP source cannot distinguish du-
plicate acks resulting from retransmitted packets that had
previously been correctly received by the receiver, and du-
plicate acks resulting from packet losses. In the absence of
Selective ACKs, it is inevitable that any fix would rely on in-
complete information, and therefore would occasionally re-
sult in sub-optimal behavior.

Thus, the most robust and appropriate fix to this prob-
lem would be to implement Selective ACKs. The problem
of multiple Fast Retransmits described in this section only
occurs because the source retransmits packets that have al-
ready been correctly received by the receiver. With Selective
ACKs, this behavior could generally be avoided.
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Figure 4: Multiple Fast Retransmits
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